Share this project

Done

Share this project

Done
Apitronics Wireless Platform's video poster
Play

a field-ready wireless platform for environmental monitoring and actuation Read more

Cambridge, MA Hardware
Share this project
160
backers
$21,673
pledged of $20,000 goal
0
seconds to go

Funded!

This project was successfully funded on October 6, 2013.

a field-ready wireless platform for environmental monitoring and actuation

Cambridge, MA Hardware
Share this project

About this project


**raffle for free weather buff kit - ends Friday at midnight**

Apitronics is a wireless platform designed for the outdoors. It includes a base station, or "Hive", that coordinates a swarm of field-ready "Bees" which collect data and control switches.

Our platform emphasizes making it easy to deploy wireless devices in harsh environments. Features include:

  • field-ready devices: running efficiently on a LiPo battery, Bees can be recharged via solar panels or wall warts
  • modular plugs with customizable sensors and switches: a waterproof connector allows you to easily attach or detach an array of sensors and switches
  • local databasing and web app: a gateway manages the wireless network and provides a browser-based UI - the system is protected against internet connectivity failures

So what does it actually do?

What a Bee does depends on what sensors or switches you "Plug" into it.

During our field-testing at two pilot farms and a rooftop garden, we have already developed two sensor arrays that we are offering during the campaign:

  • Humidity Plug: two humidity sensors designed to probe soil
  • Weather Plug: a Wunderground compatible weather station sensing everything from barometric pressure to wind conditions
An open-hardware weather station
An open-hardware weather station

We will be releasing more plugs as the platform matures. At one site, we are already doing some chicken coop monitoring! The system can send alerts if you forget to close the door or to bring water to the chickens.

When you decide what plugs you want, the data received from the Bee is saved and accessible via a locally hosted browser page. This app will allow you to setup a system, monitor it, and create triggers.

In further development, we are interested in shifting our focus to control system for field irrigation, greenhouses, or aquaponic systems. We believe that an open community working on these problems will create more affordable and diverse systems for farms.

We have also heard about a lot of people thinking of areas outside of agriculture from green energy, ecological research, to geocaching. We know that others will find lots of applications for the field-ready hardware!

Articles featuring Apitronics:

What do I need to know to use it?

It depends on what you want to do:

Basic

If you are using any of our already available plugs (soil humidity sensor and weather station), you can manage everything easily from a web browser. You'll just need to wield a drill and do some very simple wiring.

Bee Hacking

If you are interesting in expanding on the network by adding sensors, knowledge of Arduino/C++ is useful so that you can adapt drivers to work with the system. We'll make proven drivers available as we develop them, but since it is an open-source hardware project, others may be sharing drivers too!

Hive Hacking

If you want to manage where the data is going and what is being done with it beyond our browser capabilities, you can work with our code-base in Python or Node.js, or you can use whatever other language that runs on Linux!

What do you mean by open-source hardware?

All of the hardware and software source is open for hobbyists and for-profit businesses alike. Everything from circuit schematics, bill of materials, environmental enclosure designs, and software is maintained as an open-source project.

Open-source hardware allows consumer-driven development. It encourages users to understand their product, maintain it, and improve it themselves. It creates better and less expensive products. It accelerates innovation.

I have seen and heard first-hand that innovation is needed in farming electronics. As farming practices become more sustainable, diversified, and distributed, a new generation of tools are needed to reflect that.

By sharing a basic hardware platform, we get to focus on the ideas we want to try out. Instead of reinventing the wheel of low power consumption and wireless protocols, we can focus on what data to gather and how to use it.

The hardware will be released under the CERN Open-Hardware License v1.2.

The software will be released under the Creative Commons Attribution-ShareAlike 3.0 Unported.

Both are chosen for their combination of allowing use and modification of the source, while maintaining the persistence and transitivity of the license to downstream work.

How I got the idea

I am part of Farm Hack, a non-profit that tries to bring farmers and engineers together to make better tools.

At an event, Ben Shute told me that he wanted a better greenhouse temperature alarm. Commercial systems were expensive and were incapable of doing what he needed: send a text message when something is wrong. To me, a maker of things and Arduino enthusiast, it sounded really simple. He wanted to put a temperature sensor in his greenhouse, the microcontroller would read it, and use a cell phone to send him alerts. I put the idea together and we had a system that cost less than any commercial system, did everything he needed (and more), and was open-source. 

A very early prototype
A very early prototype

This first attempt was a great proof of concept. However, I realized that I only got to spend about 10% of my development time thinking about the application and the rest of my time figuring out how to keep power and communicate the data.

When I was looking at the projects I wanted to do and the open-hardware available, there was a mismatch. There were solutions for in-door monitoring or elements that came close, but nothing that integrated a field-ready devices with a dedicated server to coordinate them all.

This void quickly transformed itself from an annoyance into an opportunity as I realized that I was not alone. I thought that there must be plenty of people out there with similar needs - starting with Farm Hack - and so I started to work on the Apitronics platform.

The Platform

I first developed the Bee - an Arduino-compatible device with low-power, solar charging and a variety of built-in features desirable on a remote wireless device. Along with the ability to expose any of the Arduino headers to the 9-pin waterproof connector, this device is extremely flexible and can be expanded upon to interface with almost anything.

However, an isolated Bee is not as powerful as what can be done when many Bees are networked and managed by a dedicated embedded Linux computer: the Hive. The Hive receives readings, databases them locally, and then provides a local web page so users can monitor and control their swarm of Bees. This is essentially a web app that is hosted from within your local network!

Apitronics Architecture
Apitronics Architecture

From this basic infrastructure, the potential is enormous. Trying out new sensors is a question of writing or finding Arduino-compatible drivers. New automation algorithms can be quickly developed and tested on the Hive, leveraging Linux and its more friendly higher-level programming languages.

The communications protocol between Bee and Hive is designed for transmitting sensor readings upstream and actuator schedules downstream. A new sensor can be added to a Bee without making any modifications to the Hive's software as long as the sensor drivers is compatible with our libraries.

We have already deployed at three different test sites and have built a variety of different plugs – that is to say, arrays of sensors that plug into a Bee.

Currently our Weather Plug and Humidity Plug are ready for manufacturing and available for this campaign.

Both are, of course, field-ready. The Weather Plug is also compatible with Wunderground as a Personal Weather Station. It is the most complete open-hardware weather station available.

Technical Details

The Bee

The Bee features an ATXMega128A3, breaking out headers that are physically Arduino-shield compatible and with the same pin-mappings as the Akafuino. You can click here to see the actual pin-mappings, but basically it consists of four UARTS, two I2C, and one SPI (some overlap exists). 

The ATXMega series is not currently supported within the main Arduino IDE project, but by a very close variant Xmegaduino which supports the Arduino language core. Arduino sketches work with little effort in most cases. The ATXMega chipset boasts many additional features including the additional communications hardware listed above as well as 12-bit ADC.

Rugged enclosure that still give easy access
Rugged enclosure that still give easy access

Pins that are not being used by the headers are dedicated to the built-in peripherals such as uSD card, RTC calendar clock, and headers for radio and GPS, intended for Xbee and Adafruit GPS respectively.

Currently, the module is interfaced with a programmer and an FTDI chip, but we will be shifting over to the ATXMega128A3U before fulfillment. This will allow users to upload and debug using a microUSB cable.

Xbee S2 modules are currently supported by the Apitronics platform. To have them included with your rewards, add $17 for the low-power module or $28 or the long-range module. Please read the Xbee datasheets for details on ranges. We will send out modules relevant to your region.

The device is extremely power efficient, draining less than 1mA during sleep. The included battery allows the Bee to run for days on end from a single charge depending on how often and how long the Bees are awake.

The 9-pin waterproof connector can be connected to any of the Bee's headers inside the enclosure. This gives you enormous flexibility in selecting what kind of sensors you wish to interface with. Each Bee includes a raw plug that mates with the Bee so that you can craft your own plugs. Additional, raw plugs will always be made available in our store.

Charging with solar panels outputting 6V to 24V is accomplished with a max power-point tracking (MPPT) chip. We can supply solar panels along with your kits if you add an additional $25 or $35 dollars for 6W and 10W panels respectively. Additional shipping costs are included.

If it is difficult to decide which solar panel and Xbee to use, a good rule of thumb is to pair 10W with long-range and 6W with short-range.

The Bee can also stay connected to a wall wart during operation, using the Lithium-Polymer battery as back-up. This option can be selected for one or more of your Bees after the campaign, at which point we will provide a lower-capacity battery but a wall-wart instead at no additional cost. The benefit of this configuration is that it allows you to configure the Xbee unit as a router which extends the range of your Zigbee network around that point.

The Hive

The Hive is a BeagleBone Black running Linux. It interfaces with the Xbee coordinator via a USB dongle. A Python utility runs in the background and manages the network of Bees, saving information to a CouchDB database for its own reference and for the user-interface.

For fulfillment, we will investigate designing a cape so that the BBB can communicate directly to the module via Serial or even SPI, improving the form factor, lowering costs, and improving reliability.

We currently use 16GB uSD card to add extra memory. Memory access speeds are unimpressive which becomes obvious during graphing. We are working on different software fixes for that but are considering hardware solutions on the cape as well.

The App

The app currently supports the ability to browse all the Bees, current readings, observe historical data via graphs, and configure alarms via email and SMS.

Explore your data with our app
Explore your data with our app

A major feature that we will be developing throughout and after the Kickstarter is an interface for the user to program if-then type responses. For example, a user may decide to cancel a watering job if it rains or to kick on a fan if its too hot.

Another feature will be the integration of Wunderground forecasts into the interface. The Wunderground service provides personalized forecasts based on your weather station and we wish to provide users with that information within the platform's user-interface.

The Weather Plug

Our weather station is a complete & field-ready personal weather station, featuring the following sensors:

When you receive your weather station, there will be a simple browser-based process for setting it up as a Wunderground Personal Weather Station.

In addition, extra I2C ports and 12-bit ADC pins are broken out so that you may expand the device. I've already tried out adding soil moisture sensors myself and will provide tutorials on how to do so.

Rendering of Weather Station with New Arm
Rendering of Weather Station with New Arm

The kit will be designed to mount to a 1-inch post but it should be easy to improvise other solutions.

The Humidity Plug

The Humidity Plug is simply two encased Sensiron SHT-10's assembled onto one of our plugs. They provide temperature and humidity with typical accuracies of +/-0.5 C and 4.5 % relative humidity.

Users of this plug will also benefit from easy browser-based setup.

Product Development Manufacturing Plan

The objective of the Kickstarter is to launch the Apitronics hardware as an open-source platform that can sustain a community of developers and hobbyists.

Development is mostly complete. There is only a little bit of hardware design work that needs to be done before we can dedicate all our time to manufacturing:

  • Bee: switch to the USB version of ATXMega

  • Hive: design cape to mount Xbee

On the software side, a substantial amount of work will be done in parallel with manufacturing. The highest priority is a bootloader that will allow firmware updates via Zigbee as well as via USB. The user-interface will also be elaborated on substantially as we find ways to move as much hacking capability from command-line interfaces to the web browser.

Funds will allow us to automate manufacturing
Funds will allow us to automate manufacturing

On the manufacturing end, as we raise funds, there is a hierarchy of processes that could be sent to more scale appropriate facilities who will be able to complete the tasks much more efficiently than we can:

  • assembly of circuit boards, from the Bee, the cape for the Hive, and the weather station

  • injection molding of weather station: this will have the highest starting costs but will guarantee our ability to maintain this part of the project

  • designing our own weather bee enclosure or communicating our modifications to our current supplier so as to save on rework costs

Throughout the final steps of development and the establishment of manufacturing, our focus will be on creating something sustainable and repeatable so there will always be hardware available to nurture a community of developers interested in outdoor wireless applications.

Credits & Thanks

First of all, I'd like to thank Farm Hack and all the great people I've met through the community. Special thanks to Ben Shute of Hearty Roots Farm and Dorn Cox of Tuckaway Farm for participating as pilot farms.

A special thanks to Recover Green Roofs, Green City Growers, and their client the Ledge who allowed us an urban environment to try things out in. Their feedback has been invaluable.

Thank you to everyone who contributed to the project thus far!

Our sleek web app was developed with RJ Steinert, not only veteran of writing Linux-box web apps but also a fellow Farm Hacker.

Our beautiful video was produced and edited by Anna Pinchuk.

Thank you to Ergo Phizmis & Margarita Zalite for the soundtrack.

Our logo, infographic, and other visual goodies were designed by Christina Coobatis.

Our UV shield was designed and fabricated with Plus Fabrication, a co-resident at Industry Lab.

On that note, thanks to all the other members of the community at Industry Lab who have been amazing people to bounce ideas off of, particularly my suite-mates CoSpan Design and Leaflabs.

Finally, thank you to all my friends and family who have encouraged me throughout this whole process!

Risks and challenges

It's been two years now that I've been living in Cambridge working on this idea. Taking classes at MIT and being immersed in the research and development community of Cambridge has taught me a lot about how to prototype efficiently and how to establish small-run manufacturing.

Although we have iterated the Bee design many times and hand assembled more units than we'd like to think about, scaled up manufacturing will be a whole new challenge. We will continue working with as many domestic partners as possible to guarantee the quality and timely delivery of our devices.

We have two production methods available to us for the Bee's enclosure and the UV shield for weather sensors which will allow us to adjust our strategy depending on their respective volumes. We will continue working with our domestic partners in the design and production of these components.

For the Hive, we can use one of two different fulfilment approaches: a low-volume approach where we maintain current parts or we can design a cape for the BeagleBone Black.

For each of these elements of the platform, factors outside of our control are component lead-times, availability, and costs but we will tirelessly mitigate these risks as we move through the fulfilment process. The end-goal of this campaign is to start building a platform for innovation; the manufacturing process must be repeatable.

Learn about accountability on Kickstarter

FAQ

  • There are three distinct hardware elements in the platform: Plugs, Bees, and the Hive.

    When you order a Bee, you get our circuit board, the weather proof enclosure that exposes an antenna connector, binding posts, and a 9-pin waterproof plug. In addition, you get an actual antenna and a male plug to build your own sensor array with. Xbee and solar panels are not included.

    When you order a Hive, you get a BealgeBone black and our cape so that you can interface with an Xbee and manage your network. Software will already be setup and only browser based configuration will be needed to get started.

    The Weather Buff kit contains everything you need to deploy, except for Xbees and solar panels. We've built a few different Plugs, from chicken coop monitoring to weather stations, but are only distributing the weather station and the humidity plug with Kickstarter.

    Last updated:
  • No, they are not included. The requirements for each really depend on what you're doing. Low-power modules are great to use if you don't need the range since they are cheaper and use less battery, but the extra range is also great to have. As a reference, the long-range module uses 63 times more power!

    Note: you will need an Xbee unit for the base station as well!

    We're happy to include them with your order - just add some money to your pledge. Solar panels cost $25 and $35 for 6W and 10W panels respectively. Xbees are $17 for low-power modules and $28 for long-range modules. In general, I'd recommend pairing the 6W with Xbee low-power and 10W with Xbee long-range, but battery life really depends most on how frequently you transmit more than anything.

    Last updated:
  • Everyone's network and application is unique, so I couldn't guess all the permutations for rewards. If you want to slightly modify a reward, you can add money to your pledge to add extra devices:
    - Bee: $129
    - Hive: $110
    - Weather Plug: $210
    - Humidity Plug: $110

    If you think we should create a new reward though, please feel free to suggest it in comments!

    Last updated:
  • You can manage a standard system without even knowing Arduino! The things you will need to do are simple wiring jobs, some drilling to mount your devices, and Xbee configuration.

    There are lots of Xbee configuration tutorials out there but we will provide our own that tell you exactly what you need to do to manage our architecture.

    You will be able to upload firmware to the Bee using the app on the Hive. If you don't know Arduino code, you will have to use existing firmware and sensors plugs. We currently offer the weather plug and humidity plug but we hope that a variety of plugs sprout up similar to the Arduino shield ecology.

    If you DO know Arduino, than you will have a lot of flexibility with what your Bees can do! Our general approach is to make Xbee-Arduino networks in the outdoors easy. I've put a lot of thought into making it easy to add sensors to the Bee. We have a wrapper library that manages the different sensors, their sampling frequency, and assembling all their data into an Xbee packet. Existing Arduino drivers can be adapted fairly quickly. Once that is done, the Hive and the user-interface will have no problem handling your new sensors without your intervention on that end.

    If you want to play with the Hive, there are two central code bases: the View Controller for the user-interface and Network Controller for the network. The VC is written in a combination of HTML, Javascript, and Node.js. The NC is written entirely in Python. The basic paradigm is that incoming data from the Bees is put into CouchDB by the NC and then exposed to the user with the VC.

    The bottom line is that in the spirit of an open platform, you can do as much as you have the know-how to do. With just a little bit of knowledge, you can do the things we have already developed for. If you know some Arduino you will get to play with your own sensors. Once you're on the Hive, you can use a variety of languages to do your bidding.

    Last updated:
  • Yep! We anticipate that most people will be using the BBB, but it's perfectly possible to run all the Hive functions on a different computer. As long as you can run CouchDB, Python, and Node.js you can run our code on your machine.

    There will probably be some fiddling to get it to work just right - we use a lot of Linux utilities to run things smoothly (like cron and systemd) but you still have a great starting point no matter what operating system you're on!

    Last updated:

Rewards

  • You selected
    Pledge $1 or more

    25 backers

    NICE GUY OR GAL: my eternal appreciation for being a backer!

    Estimated delivery:
  • You selected
    Pledge $5 or more

    34 backers

    FRIEND:
    Get a sticker with the Apitronics bee on it.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $40 or more

    31 backers

    BEST BUD:
    Get a t-shirt with the Apitronics bee on it.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $79 or more

    4 backers Limited (6 left of 10)

    EARLY BAREBONES: a Bee as a bare circuit board and battery. You'll still get to benefit from all of our Arduino-compatible libraries designed for managing sensors and data-logging. Be the first to pledge to get the discount.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $89 or more

    0 backers

    BAREBONES: a Bee as a bare circuit board and battery. You'll still get to benefit from all of our Arduino-compatible libraries designed for managing sensors and data-logging.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $100 or more

    4 backers

    SUPER BEST FRIEND: You get a whole collection of Apitronics gear including a t-shirt, a vinyl sticker, and a tote bag!

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $109 or more

    10 backers All gone!

    EARLY INNOVATOR: A single bee but enough to get started! This is the circuit board inside the enclosure. Includes an antenna and a raw plug to create your own sensor array! Be the first to pledge to get the discount.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $129 or more

    1 backer

    INNOVATOR: A single bee but enough to get started! This is the circuit board inside the enclosure. Includes an antenna and a raw plug to create your own sensor array!

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $339 or more

    8 backers Limited (2 left of 10)

    EARLY ADOPTER:
    Two Bees as in the INNOVATOR package plus a Hive to manage everything! This kit will allow you to experience the whole prototyping platform.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $339 or more

    10 backers All gone!

    EARLY WEATHER BUFF: Includes a Hive, a Bee, and the Weather Plug! Pledge more for Xbees and solar panels and you are ready to go with an easy setup from a browser. Be the first to pledge to get the discounted price.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $369 or more

    0 backers

    ADOPTER:
    Two Bees as in the INNOVATOR package plus a Hive to manage everything! This kit will allow you to experience the whole prototyping platform.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $439 or more

    3 backers

    WEATHER BUFF:
    Includes a Hive, a Bee, and the Weather Plug! Pledge more for Xbees and solar panels and you are ready to go with an easy setup from a browser.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $649 or more

    6 backers Limited (4 left of 10)

    EARLY EXPERIMENTER: Everything in the ADOPTER package, plus a weather station and a humidity plug. Pledge more for Xbees and solar panels and you are ready to go with an easy setup from a browser. Be the first to pledge to get the discounted price.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $699 or more

    0 backers

    EXPERIMENTER: Everything in the ADOPTER package, plus a weather station and a humidity plug. Pledge more for Xbees and solar panels and you are ready to go with an easy setup from a browser.

    Estimated delivery:
    Ships anywhere in the world
  • You selected
    Pledge $2,399 or more

    1 backer Limited (2 left of 3)

    DIGITAL FARM: get one year of personal support from Apitronics in deploying a Swarm on you farm, ranch, or garden. We'll send you a Hive and three Bees with any combination of our already developed plugs. Everything will be configured and ready to deploy. We'll commit to full support in keeping your Swarm up and running all season long.

    Estimated delivery:
    Only ships to: United States

Funding period

- (30 days)