Share this project

Done

Share this project

Done
What if we built a rocket that is better than a NASA or commercially available rocket? What if we did it with students?
What if we built a rocket that is better than a NASA or commercially available rocket? What if we did it with students?
294 backers pledged $17,176 to help bring this project to life.

About this project

Starscraper: The Next Generation of Suborbital Rockets project video thumbnail
Replay with sound
Play with
sound

$17,176

294

burocket.org | twitter | facebook | youtube

Starscraper is a 30 foot-long, 1,100 pound suborbital rocket that can carry 100 pounds of experiments 435,000 feet into space and return gently to earth. But beyond that, Starscraper is an educational breakthrough.  It’s a project that allows us to figure out how to do things never thought possible to do at the student level, which has important implications in all disciplines.

Our vision is to launch Starscraper on July 25, 2015. We believe that the Kickstarter community can help us close the gap on funding to realize this vision. Check out Update #4 for more information about how you can design a payload for the rocket that will be launched into space and brought back to Earth.

Schematic of Starscraper
Schematic of Starscraper
Up close view of a Mk IV hot fire test. The Mk V's predecessor, the Mk IV is a subscale motor used on the Quasar launch vehicle.
Up close view of a Mk IV hot fire test. The Mk V's predecessor, the Mk IV is a subscale motor used on the Quasar launch vehicle.

Currently, NASA and a few commercial companies offer a fleet of suborbital rockets that launch about 100 times per year worldwide. They conduct research in physics, biology, space weather, astronomy, and microgravity research. However, they have two problems;

  • These solid fuel rockets subject their payloads to extreme conditions: more than 20 times the force of gravity in some cases with vibration more intense than a jackhammer. 
  • They are expensive and single use only; after launching their payload out of the atmosphere, the booster rockets are discarded. The cost of a NASA sounding rocket mission is on the order of about a million dollars per launch.

The extreme forces experienced by the experiments onboard limit the research that can be done by these flights. The problem is that the extreme launch environments are functions of the solid fuel rocket boosters used: they burn very quickly with a lot of thrust, generating intense acceleration.

A solution to this is to use rockets powered by liquid fuels – like the Saturn V from Apollo. But liquid rocket engines are expensive and would make an already expensive solid rocket propelled mission cost-prohibitive.

Mk IV oxidizer tank after a cold flow test. Following the cold flow test, the tank reaches a temperature lower than -50 degrees Celcius.
Mk IV oxidizer tank after a cold flow test. Following the cold flow test, the tank reaches a temperature lower than -50 degrees Celcius.

Starscraper uses a relatively underdeveloped type of rocket technology called a hybrid motor. This motor (which you can learn more about on our website) uses a combination of solid fuel and liquid oxidizer which produces less thrust at a greater efficiency than a solid rocket. As a result, our rocket motor burns smoothly for a very long time. This means that our rocket places much less stress on our payloads, about what you would experience on a theme park ride. We do this by throttling back the motor as the rocket ascends to keep acceleration loads small.

With a long burning rocket, it is hard to keep it pointed where you want it. That means that we need a stabilization and control system just like the Space Shuttle or Saturn V. We have figured out how to do this with low-cost, off the shelf components that is good enough for what we need at a small fraction of the cost of traditional flight control systems.

It is also reusable. The entire rocket re-enters the Earth's atmosphere and lands using big parachutes for a soft touchdown. The rocket can then be re-fueled and re-launched for the next mission. Traditional "throw-away" rockets of this size are like throwing away something that costs as much as a house after each flight. With our reusable rocket, we are re-using something that costs as much as a car after each flight. 

We have partnered with two organizations called Magnitude.Io and Teton Aerospace that are dedicated to advancing math, science, engineering, and technology education around the world. Our first launch will carry 20 lbs (or 9 kg) of CanSats, satellites built to fit the approximate form factor of a soda can. These suborbital payloads can be built by anyone from high school students all the way up to sounding rocket scientific instruments. The idea is that it gives anyone a chance to work on real space-grade hardware, fly to space and analyze the data from launch and in-space operations. 

   
The Mk IV on the test stand during a hot fire test.
The Mk IV on the test stand during a hot fire test.

Yes. We are a team of passionate students at Boston University who have been working hundreds of man-hours per week for three years to make this possible. Interestingly, Boston University does not have any faculty members with backgrounds in rocket propulsion, so we have had to learn everything ourselves. As a result the program is entirely student run.

From the rocket engine to the flight computers to the trailer used to carry the rocket, everything we design and build is from scratch.

Hyperion Rev. A - Data Acquisition and Fuel & Process Control Board
Hyperion Rev. A - Data Acquisition and Fuel & Process Control Board
Kronos - the primary flight computer on Starscraper.
Kronos - the primary flight computer on Starscraper.
SolidWorks rendering of Atlas, the transporter and test stand for the Mk V motor.
SolidWorks rendering of Atlas, the transporter and test stand for the Mk V motor.
Current progress on Atlas.
Current progress on Atlas.

Suppose you had two students: a theoretical learner and a hands on learner. You could go to the first one and he could derive you Bernoulli’s Law (the equation that governs flow in pipes) or you could go to the other student and they could build you a working high pressure fluid system. 

The second student is from the Boston University Rocket Propulsion Group. We take students that are restricted by traditional classroom learning and we put them in an applied environment and that is where the magic happens.

We have become very good at teaching through application. Undergrads are only at school for four years, we do not have time for them to take four years of classes and then start designing rocket parts. We need them to start designing rocket parts right away and we want to share what we come up with from an educational standpoint. 

Student installing electronics on the Mk IV motor
Student installing electronics on the Mk IV motor
 
Student working on parts for Atlas, the test stand for the Mk V.
Student working on parts for Atlas, the test stand for the Mk V.
 

For the past three years, our goal has been to launch Starscraper for the first time in July 2015 in Nevada, and we are on schedule. We have built and test fired three sub-scale rocket motors, and are almost done testing every technology that we need for Starscraper (including flight testing the flight control system in January).

  • We are currently fabricating the first Starscraper and intend to start ground testing in February.
  • We have raised 60% of the funds that we need this year.  
  • We are looking to the kickstarter community to help part of the last 40%.

We know that this project can work, but we need money to get to the next stage.  We are asking the Kickstarter community to help us bring this exciting and innovative project to life.  The target funding allows us to finish building the first rocket and do limited ground testing on it.  The stretch target would fully fund the rest of the ground testing for the first flight. Become a backer and you can be part of the team; gain exclusive behind the scenes access to the Starscraper mission. When we launch into space, you will be able to say that you were part of making it happen.

Front: ASTRo - Used to test our guidance systems.                Rear: Mk IV - Launch Vehicle during the 2013-2014 Campaign.
Front: ASTRo - Used to test our guidance systems. Rear: Mk IV - Launch Vehicle during the 2013-2014 Campaign.
Mk V oxidizer tank being transported to the lab. The tank is 14 ft long, which is only less than half the length of the launch vehicle.
Mk V oxidizer tank being transported to the lab. The tank is 14 ft long, which is only less than half the length of the launch vehicle.

How does the control system work?

We use small servo motors that turn small valves to inject liquid nitrous oxide into the nozzle, which creates supersonic shock waves in the expansion bell of the nozzle. This has the effect of changing the direction that the thrust is pointed. It is called Liquid Injection Thrust Vector Control. This is much lighter and cheaper than other methods of vectoring thrust, which either require heavy and expensive actuators or flexible bearing joints that can withstand extreme temperatures and require exotic materials.

What about the high loads during re-entry?

Our rocket bleeds off energy by using its control system in a low stress controlled tumble through the atmosphere. This means that the parachutes are deployed at low dynamic pressure, which results in low opening jolts. 

Nobody gets hybrid rocket engines to work well…

We have achieved 95%+ of theoretical max performance on our two most recent engine designs: one motor at 1/20 of the full scale thrust and one motor at 4/5 of the full scale thrust.

We have also demonstrated stable combustion all the way from full thrust down to a 10% thrust level. The stable and smooth combustion is a combination of good injector design, conservative oxidizer mass flux targets, and segmented fuel grain design.

What are your plans after the first flight?

We stand with Boston University’s commitment to open research. We intend to make available the key parts of the work that we have done both from a technical standpoint and from a pedagogical standpoint. There are two caveats to this: there are some export regulations related to rocket hardware, and we have picked up a couple of tips and tricks from various professional companies along the way whose intellectual properties we must respect. However, 90% of what we are learning can and will be released.

As for the second and later flights, there are a couple of payload opportunities that have popped up. We believe that Starscraper will fly operational missions, but it remains to be seen whether those will take place under the BURPG banner or if they will be operated by another to-be-named organization while BURPG keeps advancing the state of the art in affordable rocket technology in other areas.

Where does your financial support currently come from?

About 30% of the funding comes from various departments around Boston University, 60% from corporate sponsors such as Advanced Circuits, GE Aviation, and Raytheon, and 10% from private donors.

How much does a Starscraper launch cost?

Per vehicle reusable hardware: $60k for the first vehicle, $30k to $50k for multiple unit production

Launch operations and propellant: $8k per launch

To date development costs (infrastructure, subscale test vehicles, R&D): $90k 

Risks and challenges

Owing to the nature of its size, scale, and complexity, Starscraper is bigger and more complicated than the average Kickstarter project, so there are more risks and challenges involved and a few extra considerations in addition to those provided on Kickstarter’s website.

1. LAUNCH + OPERATIONS: It will require a rocket launch and a subsequent series of testing to get Starscraper into space . As is true for any launch and subsequent space operations, there sometimes are a series of challenges. Though we try our best to prevent any complications, tests and launches can fail, resulting in loss or destruction of equipment. The launch and operations (including equipment recovery) is technically complex and involves many risks beyond our control. BURPG is not responsible for any failure to perform all or part of the Kickstarter Project Rewards. If such failure is caused, we will try to provide a fair, alternative reward for your generous contribution.

2. OBTAINING REWARDS: In order to obtain rewards, backers must keep BURPG up to date with all contact details. BURPG is not responsible for lost or stolen rewards, certificates or tickets. Backers are solely responsible for determining any tax liability arising out of rewards provided by BURPG. Backers are subject to and must comply with any additional terms, conditions and restrictions that may apply to specific rewards.

3. TRAVEL + ACCOMMODATIONS: You, the Backer, will be solely responsible for all travel arrangements and expenses, including accommodation, in order to attend any of the events listed in the Kickstarter rewards.

Learn about accountability on Kickstarter

Questions about this project? Check out the FAQ

Support this project

  1. Select this reward

    Pledge $1 or more About $1.00

    CHRISTA MCAULIFFE -- You will be listed as a backer on our website in addition to having our eternal thanks.

    Less
    Estimated delivery
    58 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  2. Select this reward

    Pledge $10 or more About $10

    JIM LOVELL -- A subscription to our online newsletter with access to project photos, videos, and updates. You'll see firsthand the ups and downs of developing space systems.

    Receive all previous rewards.

    Less
    Estimated delivery
    94 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  3. Select this reward

    Pledge $25 or more About $25

    VALERI POLYAKOV -- Receive a BURPG team photo with Starscraper signed by members of the Starscraper team.

    Receive all previous rewards.

    Less
    Estimated delivery
    40 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  4. Select this reward

    Pledge $50 or more About $50

    JOHN GLENN -- Send a custom note on the inaugural flight of Starscaper. You'll be able to send any custom message that will fit on one side of a business card, and then we'll send it back to you after the mission!

    Receive all previous rewards.

    Less
    Estimated delivery
    Ships to Anywhere in the world
    26 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  5. Select this reward

    Pledge $100 or more About $100

    BUZZ ALDRIN -- Receive an original, unreleased photo (only one copy of each photo will be printed) taken from space in addition to a digital copy of the photo.

    Receive all previous rewards.

    Less
    Estimated delivery
    Ships to Anywhere in the world
    33 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  6. Select this reward

    Pledge $250 or more About $250

    ALEKSEI LEONOV -- Receive a full color poster of Starscraper, signed by the Starscraper team.

    Receive all previous rewards.

    Less
    Estimated delivery
    Ships to Anywhere in the world
    5 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  7. Select this reward

    Pledge $500 or more About $500

    ALAN SHEPARD -- Receive a 1:10 flying scale model kit of Starscraper. When completed, it is 34 inches tall and flies on standard 24mm motors.

    Receive all previous rewards.

    Less
    Estimated delivery
    Ships to Anywhere in the world
    8 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  8. Select this reward

    Pledge $1,000 or more About $1,000

    VALENTINA TERESHKOVA -- Receive a 3-D printed model of Starscraper on Atlas, the test trailer. Additionally, your name/organization will be promoted as an official member of the BURPG team of sponsors and will be promoted on our website, and will receive a BURPG Starscraper 'Mission Supporter' insignia for inclusion on your website and other materials.

    Receive all previous rewards.

    Less
    Estimated delivery
    3 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  9. Select this reward

    Pledge $1,100 or more About $1,100

    CANSAT -- Launch a payload on Starscraper's first launch! Payloads must be <500g and fit within the CanSat standard envelope. You are responsible for the fabrication of the payload, and $666 of your pledge covers the integration with the launch vehicle and development of the payload carrier. Additional details apply, contact us for more information.

    Less
    Estimated delivery
    Ships to Anywhere in the world
    Limited 0 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  10. Select this reward

    Pledge $5,000 or more About $5,000

    NEIL ARMSTRONG -- An invitation to join us at the inaugural launch of Starscraper in Black Rock Desert, Nevada*. You will be able to join the team at mission control. Additionally, receive an invitation for you and 10 other people to come visit our rocket lab at Boston University.

    *This reward can be swapped for an invite to our static tests in Sudbury, Massachusetts.

    Receive all previous rewards.

    Less
    Estimated delivery
    Ships to Anywhere in the world
    0 backers
    $
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.

Funding period

- (31 days)