
About

$89,806
102
How is 3DMonstr Unique?
3DMonstr has many capabilities rolled into one powerful machine.
- Its build volume is impressive. The smallest of its family is 1 cubic foot; the middle is 3.375 cubic feet, the largest is 8 cubic feet.
- It has four independent filament extruders, each with its own temperature control
- You can print small things on a big printer, but you can't print big things on a small one. That's why, whether you're printing large or small, we want to make sure that you could do so in fine resolution style, printing 40 micron layers.
- The extruders are attached to the machine via a QuickMount release making it really easy to switch them in and out and trivial to adjust their height. Just drop the extruder to the glass and go.
- 3DMonstr was built to last. It's like no 3D printer you've seen before. Made from industrial grade materials, it's incredibly sturdy and rigid. When people see this printer, they say, "Now this is serious."
- 3DMonstr printers are designed for future growth and built to last through rapidly changing technology. We wanted to build a structure that could push the limits of what future technology can throw at it because we want to be able to print more than plastic. After Kickstarter is over and the machines have been delivered, our focus will be on advanced extruders. That's why we needed to make sure we had a structure that could handle strong materials and high thermal stress.
- One of the biggest, ongoing frustrations and complaints of 3D printer users is the calibration process. It's not the kind of big we were going for, so we took the calibration solution a step further, and instead of trying to make calibration easier, we eliminated the problem by designing a large part of the problem right out of the printer.
- A nice touch is that 3DMonstr is foldable. This way, if you don't have a large workspace, you can fold it flat and tuck it away. You can also quickly remove the gantry from the table bed for easy transport. It comes apart and can be put together with no tools, in just a couple of minutes.

Our Story
It sure seems like there are already a lot of 3D printers on the market, including many good ones that were supported by Kickstarter campaigns. Yet, when we needed a 3D printer for rapid prototyping of a rocket engine and for building large format cameras, we discovered that our needs fell squarely into a gap in the market.
We required a large build volume; modularity, for easy maintenance and upgradability to give us a machine that was going to last through rapidly changing technology; and four independent extruders -- quick to mount, adjust, and upgrade.
To make this happen, we needed a powerful 3D printing motion platform to handle the build volume’s large size, maintain precision, house the four independent extruders -- each with its own temperature control -- and survive high thermal stress, for a wide variety of materials.
Our last requirement was driven by the size of our workspace. We wanted the printer to take up less space when not in use, be easy to transport, and be quick and easy to set up.
Our research showed that we weren't the only ones searching for this. Engineers, makers, foodies, designers, educators, prop and model makers, museum display builders, artists, and architects all wanted to be able to use a machine with these capabilities.
So, we decided to make one for them and for you.
Quick Specs for 3DMonstr

Size & Weight

3DMonstr folds (and unfolds) as easy as 1 2 3

Mechanics

Calibration
There are three parts on a printer that need to be properly calibrated in order to have a successful print.
- X/Y axes: This never needs to be calibrated on the 3DMonstr machines because precise calibration is built into the design with the ballscrews. Even when you fold and unfold the machine or take apart the printer bed from the gantry for transport and put back together again, the machines stay calibrated. Simply put: 3DMonstr X/Y axes is delivered to you calibrated and stays calibrated.
- Leveling the bed. You might need to level the bed occasionally when you move the machine, but we made it really easy to do so. The procedure consists of moving the extruder to several spots on the print bed, pushing the "Home" button for the Z axis, and adjusting the bed height to meet the extruder tip. More detailed instructions are included with the printer.
- Setting the Z height: This is where the QuickMount(TM) shines. All you need to do is home the z axis and drop each extruder to the glass. You're done.
4 Zero Backlash Ballscrews
Whether made by us or purchased pre-made, every piece that is a part of our 3DMonstr printers was built and chosen with care to ensure the highest quality product. For example, the zero blacklash ballscrews assemblies that are in all our machines and are shown below, have the excellent rating of C7 for high accuracy.

Electrical/Electronic

Software

Our "Extrudinary" LittleTitan-Filament Extruder

Size really does matter, both large and small.
Our 3D printers are large so you can print big. Yet, with our extruders, the focus was on small, so that even with four extruders mounted on the machine, the overall package would be small and light weight so as not to impede print area and speed.
Our LittleTitan-Filament"extruders are almost .5" smaller in width and weigh about half of most extruders out there. In fact, LittleTitan-Filament weighs less than just the NEMA17 motor you'll find in most extruders.
It does this through a combination of using smaller motors, engineering a high precision gearbox, and even making some parts out of Titanium, where appropriate. Getting that right, and then making it possible to manufacture for a reasonable cost took almost 8 months, twice as long as it took to design and build the motion platform!
We re-designed our extruder over and over and over and over again, for size, weight, and manufacturability, and we now proudly introduce LittleTitan-Filament to you.


"What can I do with four extruders," you ask?
Many things. Here's one example.
When the printer is fully populated with four extruders, you may use one material extruded through a fine nozzle for the perimeter, a larger diameter nozzle for the infill, an easily dissolved plastic for support scaffolding, and another material for special purposes (such as a different perimeter color or electrically conductive structures printed right in).
With future 3DMonstr extruders, customers will be able to use additional materials. For example, you will be able to create an object with a soft insert embedded into the structure, add ballast to weight the object differently in one part, or print using much lower cost materials.
Future extruders will include..
- Food grade (chocolate, frosting, cheese)
- Low-temp paste (paraffin wax, silicon rubber, clay, and ceramics)
- Plastic pellets (PLA, ABS, and others)
Sample Prints







Printer Reward Level Explanation



*Shipping Costs

*If you need shipping outside the U.S., please get in touch with us so we can get you an individualized price quote.

What Happens When 3DMonstr Arrives At Your Door?
When 3DMonstr arrives at your door, we expect you'll be really excited, but maybe you'll be feeling something else. Elation? Trepidation? Other?
The gantry and the bed will arrive in two pieces. Once you take them out of their boxes, you’ll use the one inch steel pivot pin to piece them together. You won’t need any tools, and it will take about five-ten minutes the first time you do it.
The x/y axes will already be calibrated during production. You might need to level the print bed if where you’re putting the printer is uneven - a two minute procedure. You do it once, and you’re done.
All our 3D printers are pre-wired for four extruders; the only difference is whether you start out with the two or the four-extruder QuickMount. You simply “home” the Z axis, slide the LittleTitan-Filament extruders you have on to the QuickMount, tighten the lock, and you’re ready to go.
You'll also receive a chip with g-code so you can quickly test things out to make sure everything is working properly. Now you’re ready to go!
From There To Here
The Frame:
It's hard to believe it was over a year ago when we first started to "cut metal." It's easy to remember, because it was right around the time of Hurricane Sandy. We were finalizing renderings in the Senior Center of our community because our town kindly opened it up for everyone with no electricity, which was most of us.
We had been designing the printer for about three months earlier, and finally to be ready to start making the pieces and needing to wait for electricity to come back on was frustrating to say the least, although we knew that compared to many in our area, we were the lucky ones.
When we cut our first piece of metal we were on our 5th iteration of the machine. We started printing late January 2013. In March we upgraded X- and Y-axes to the NEMO 23 motor. In April, we upgraded power to 24 volts, and in May we introduced 3DMonstr at Bay Area Maker Faire.
Since then, we 1.) designed a new circuit board so that the wiring for the extruder will be neater and no longer persnickety; we 2.) reworked the tilt mechanism and therefore the connection between the gantry and the table. It's easy to fold flat as one piece, or take apart into two pieces and then put back together, easily, quickly, and with no tools, and we 3.) made changes to the frame so we could hide the electronics and cables in it. The printer now not only looks cleaner, but also the electronics and cables are easily accessible.
The Filament Extruder:
We began designs on our filament extruder in November 2012 and by January we were printing. Our first filament extruder was vertical and we had about six versions of that one. We were printing by January of this year and the extruder was working beautifully. The problem though, was that it was too expensive to produce.
We went back to the drawing board and CAD software, and designed our horizontal LittleTItan-Filament extruder. Now on our 3rd version, it's stable, and we're going to production with this version. We built two already and tested them and are building another five for testing the manufacturing process.
All told, when we looked at our version control numbers so we could write up this section for Kickstarter, we were over 700 iterations between the platform and the extruder!



Where We're Going
The prototype is complete and tested. While the Kickstarter campaign is running, we'll continue to improve manufacturability, and be here to answer questions and provide updates.
Once the campaign is over, and assuming that it's successful, we will order the raw materials and spend the next 3-1/2 months finalizing the production configuration and CAM programming and building test machines. We will then begin manufacturing and delivering the machines to you at the end of May.
Once we deliver the printers to you, our next focus will be on expanding what you can print.
Examples of what future extruders will be able to print, are: Food grade materials such as chocolate, frosting, and cheese; low-temperature pastes such as paraffin wax, silicon rubber, clay, and ceramic pastes, and plastic pellets which will lower the cost of printing. We’re working on other materials as well.
Our Team
Ben Reytblat; Eduard Nesterov; Susan Minzter; Ronald Minzter, MD; Will Groppe; Anne Driscoll; Volodymyr Nesterov; Abigail Reytblat; Danny Reytblat; Sharon Murrel, PhD; Dr. Anatoli Tsaliovich

Places You May Have Seen Us!

Kickstarter...
We'd really appreciate your help!
We need your help Kickstarter, to get 3DMonstr into the hands of the people who want it. We need to...
- Add more milling machines, which we will lease, to increase production.
- Add tooling to make production more efficient: Tooling are things like cutters, mills, and drill bits; high precision measurement instruments; and tool-holding and work-holding, such as vice and fixtures.
- Increase the volume of raw material and components purchasing to lower the price.
- Install and configure an enterprise resource planning system to help us track production and customer support issues.
Years ago, Ben started a company with three friends and in doing so, set out to create a company that they would want to work for. In the case of 3DMonstr, we set out to create a 3D printer that we would want to use.
We believe we created a 3D printer that would be useful to many people, helping them realize their dreams whether they be engineers, artists, students, entrepreneurs, architects, or other Maker.
3DMonstr is versatile and powerful, and we’re excited to be able to produce it for you.
Thank you.
Risks and challenges
We've worked hard to eliminate as many risks and challenges as we can, but until 3DMonstr is delivered to your door, we all know that there are some because there always are.
All technical risks have been retired for all three machines. They have identical infrastructure and all our models show that everything is working 100%. The only difference in the three machines, is that as the size increases, so does the size of some of the parts such as the bed, guide rails, ballscrews, and U-Channels. This makes for predictable manufacturing and helps keep the costs down.
We are dependent on suppliers for products, be they ready made, such as ballscrews and motors, or materials that we can build custom build parts from, such as the blocks, u-channels, and the extruder.
Whenever possible, we are getting products within the U.S. The U.S. products make up about 80% of 3D Monstr's parts by weight and 75% by dollar value. Because the price for the remaining products was too great (sometimes by a factor of five!) to get them in the U.S., we are getting them from China from suppliers that we have ordered from 2-3 times each to test quality and delivery time. In fact, in the process, we eliminated a few vendors that didn't meet our quality criteria.
As soon as the Kickstarter campaign closes successfully, one of the first things we'll do, after jumping up and down for joy and expressing a huge thank you to our supporters, is order these parts from China. In addition, we are spreading out the orders among different vendors. This is why we are installing a full blown ERP system to help manage the supply chain.
What does remain "risky" at the moment is the rate of production on our infrastructure. Stretch goal success will enable us to get more space and lease more machines, increasing the rate of manufacturing.
Learn about accountability on KickstarterQuestions about this project? Check out the FAQ
Support
Funding period
- (35 days)