€3,589
pledged of €60,000pledged of €60,000 goal
30
backers
0seconds to go
Funding Unsuccessful
The project's funding goal was not reached on Sat, April 9 2016 8:08 AM UTC +00:00
€3,589
pledged of €60,000pledged of €60,000 goal
30
backers
0seconds to go
Funding Unsuccessful
The project's funding goal was not reached on Sat, April 9 2016 8:08 AM UTC +00:00

About

What is our project all about?

(Für deutsche Beschreibung bitte nach unten scrollen / for German description please scroll down)

Mankind’s consumption of ground water is increasing dramatically. With today’s filter technology it is not yet possible to clean up waste water or salt water as replacement for potable water. Additionally, we are producing more and more Carbon dioxide, which is responsible for global warming. There is no efficient way to separate it from exhaust gases in order to prevent it from getting into the atmosphere.

We want to make it better! We at CNM Technologies have developed the thinnest plastic film available. It is only about 1 nanometer – a millionths of a millimeter – thin and makes such filter and separation processes faster and more energy-efficient. 

In a conventional, thick filter membrane, gas molecules are first dissolved into the membrane material upon adsorption at the surface. They then will diffuse through the bulk of the membrane and are finally released at the other side. Individual molecules might even hinder each other on the way through the membrane. All these processes run faster or slower depending on the type of the molecules. To keep them running it is necessary to press the molecules through the membrane with a pump consuming a lot of energy.

Conventional thick membrane
Conventional thick membrane

If the thickness of the membrane is reduced to the nanometer range, small gas molecules reaching the membrane are simply passing through when hitting a pore with matching diameter. Larger molecules which are not fitting to the pore diameter cannot pass. They bounce of the wall. CNM's secret lies in the reduction of the thickness and the creation of the right pores to separate the desired gas component from a mixed gas flux.

Ultrathin Carbon nanomembrane
Ultrathin Carbon nanomembrane

To produce such a membrane, molecules are deposited on a substrate, e.g. the surface of a metal foil. These molecules are subsequently cross-linked by radiation, thus forming a stable layer, which can be released from the original substrate and transferred to a mechanically more stable support. The supported membrane can be then included into a membrane module and used for gas separation.

Molecules in a self assembled monolayer during crosslinking process
Molecules in a self assembled monolayer during crosslinking process

In order to show that to our potential customers and end users, the CNM team wants to build such a demonstrator. It consists of a module, in which our membranes are assembled, a small pump, and some measurement devices. A gas mixture, such as an exhaust gas containing carbon dioxide, runs through the module and is split into a clean gas flux with reduced carbon dioxide load and the separated CO2. The measurement devices track the composition of the three gas fluxes and the energy consumption of the pump.

Scheme of the planned demonstrator module
Scheme of the planned demonstrator module

The money CNM Technologies asks for will be spend for the final development of the membrane prototypes, the assembly into a module corpus and the integration of corpus, membranes and measurement tools into a ready-to-use prototype/demonstrator.

With the help of this demonstrator we will be able to bring our technology faster to the market. The improved separation and filtration performance will help to solve some of the 21st century’s environmental challenges. We would be happy, if you could support us on our way!

Rewards

We will give four different rewards:

  • an e-mail with a big "Thank You" and regular updates on our progress (for a donation of >5 €)
  • a 1 x 1 cm² piece of a silicon wafer with a CNM logo (for a donation of >150 €, first 10 backers get it for a donation of >140 €)
  • a 1 x 1 cm² piece of a silicon wafer with an original Carbon nanomembrane on top (for a donation of >500 €, first 5 backers get it for a donation of >470 €)
  •  a 1 x 1 cm² piece of a silicon wafer with an original pyrolized Carbon nanomembrane on top, the pyrolization makes the membrane excellently visible on the silicon (for a donation of >1.000 €, first 5 backers get it for a donation of > 950 €)

Worum geht es in unserem Projekt?

Die Menschheit produziert immer mehr Kohlendioxid, das die Atmosphäre aufheizt und zum Klimawandel beiträgt. Zusätzlich verbrauchen wir immer mehr Grundwasser und schaffen es nicht schnell genug, schmutziges Oberflächenwasser oder salziges Meerwasser mit der heutigen Filtertechnologie als Trinkwasser aufzubereiten. Wir wollen das besser machen.

Wir bei CNM Technologies haben die dünnste Kunststoffmembran der Welt entwickelt, sie ist nur noch etwa einen Nanometer dünn und kann solche Filterungsprozesse einfacher, schneller und vor allem energiesparender machen.

Bei einer klassischen, dicken Filtermembran müssen die Gasmoleküle sich erst an der Wand der Membran anlagern, dann in dem Membranmaterial gelöst werden und durch die Membran hindurchdiffundieren. Das geht bei verschiedenen Molekülen unterschiedlich schwer. Außerdem behindern sich die Moleküle bei ihrer Wanderung, was dazu führt, daß die Pumpe eine hohe Energiemenge verbraucht, um die abzutrennenden Moleküle durch die Membran zu pressen.

Konventionelle, dicke Membran
Konventionelle, dicke Membran

Wenn man die Membran wie in unserem Fall aber nur noch 1 nm dünnherstellt und mit passenden Poren versieht, dann treffen die kleineren Gasmoleküle auf die Porenlöcher und sind im selben Moment auch schon durch die Membran hindurchgetreten. Die größeren Gasmoleküle passen nicht durch die Poren und prallen so an der Wand ab und können nicht hindurch. Unser Geheimnis besteht neben der dünnen Membran darin, die Poren passend zur abzutrennenden Gas-Sorte wie zum Beispiel CO2 in die Membran zu bringen.

Ultradünne Carbon Nanomembran
Ultradünne Carbon Nanomembran

Wir produzieren eine solche Membran, indem wir Moleküle auf einem Startsubstrat, z.B. einer Metallfolie, zu einer selbstaggregierenden Monolage abscheiden. Diese Moleküle werden anschließend durch eine Bestrahlung quervernetzt und bilden eine stabile Schicht. Diese Nanomembran kann anschliessend auf eine stabilere Trägerschicht übertragen und in ein Modul eingebaut werden, in dem sie als Gas- oder Wassertrennmembran arbeitet. 

Quernetzung der einzelnen Moleküle mit Hilfe einer Elektronenstrahls
Quernetzung der einzelnen Moleküle mit Hilfe einer Elektronenstrahls

Um das am Markt potentiellen Kunden und Anwendern eindrucksvoll beweisen zu können, möchten wir einen Demonstrator bauen. Dieser Demonstrator besteht aus einem Modul, in dem unsere Membranen verbaut sind, und in das z.B. CO2-haltiges Abgas einströmt und ein gesäuberter Gasstrom sowie das abgetrennte CO2 herausströmen. Zusätzlich benötigen wir eine Pumpe, die das Gasgemisch durch den Demonstrator pumpt und einige Meßgeräte, die die Zusammensetzungen der drei Gasströme sowie den Energieverbrauch der Pumpe bestimmen. Um das einfach und schnell demonstrieren zu können, möchten wir den gezeigten Demonstrator aufbauen. Er wird uns helfen, diese Technologie so bald wie möglich in den Markt zu bringen und damit bei der Lösung des einen oder anderen großen Problems zu helfen. Wir können unsere Membranen aber auch in Produktionsprozessen der Halbleitertechnik, für den Schutz von Oberflächen oder die Rückgewinnung von teuren Prozessgasen einsetzen.

Schema des aufzubauenden Demonstrators
Schema des aufzubauenden Demonstrators

Helfen Sie uns, den nächsten Schritt auf diesem Weg zu gehen!

Risks and challenges

Our membrane already show a promising characteristic for the above described separation tasks. Nevertheless we need to finalize their development with an appropriate carrier and support structure to make them mechanically stable. A thickness of only 1 nm is great for gas separation, but not really good for handling and assembly activities! Therefore, we have to add a mechanical support layer. This is the first part of the development activities.
Having finished this part of the project, we go for existing "infrastructure" in the next part: the corpus of the module and the measurement devices are state-of-the-art technology and there should be no risk in getting them. The structure of the membranes in the corpus (how many membranes in parallel and how many in series) can be simulated upfront, but still need some confirmation by testing in order to get a realistic result e.g. on pressure losses.
The summary is: some challenging tasks, but we are confident to solve them!

Learn about accountability on Kickstarter

Questions about this project? Check out the FAQ

Support

  1. Select this reward

    Pledge €5 or more About $6

    "Thank you for your support" e-mail and regularly updates on our progress

    Less
    Estimated delivery
    18 backers
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  2. Select this reward

    Pledge €140 or more About $163

    1 x 1 cm² of a silicon wafer with CNM logo

    Less
    Estimated delivery
    Ships to Anywhere in the world
    Limited 1 backer
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  3. Select this reward

    Pledge €150 or more About $175

    1 x 1 cm² of a silicon wafer with CNM logo

    Less
    Estimated delivery
    Ships to Anywhere in the world
    0 backers
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  4. Select this reward

    Pledge €470 or more About $549

    Carbon nanomembrane on 1 x 1 cm² silicon wafer

    Less
    Estimated delivery
    Ships to Anywhere in the world
    Limited 0 backers
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  5. Select this reward

    Pledge €500 or more About $584

    Carbon nanomembrane on 1 x 1 cm² silicon wafer

    Less
    Estimated delivery
    Ships to Anywhere in the world
    0 backers
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  6. Select this reward

    Pledge €950 or more About $1,109

    pyrolized Carbon nanomembrane on 1 x 1 cm² silicon wafer (makes the thin carbon nanomembranes much better visible on the silicon)

    Less
    Estimated delivery
    Ships to Anywhere in the world
    Limited 0 backers
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.
  7. Select this reward

    Pledge €1,000 or more About $1,168

    pyrolized Carbon nanomembrane on 1 x 1 cm² silicon wafer (makes the thin carbon nanomembranes much better visible on the silicon)

    Less
    Estimated delivery
    Ships to Anywhere in the world
    3 backers
    Kickstarter is not a store.

    It's a way to bring creative projects to life.

    Learn more about accountability.

Funding period

- (60 days)