Funding Unsuccessful This project’s funding goal was not reached on .
Photo-main
Play
00:00
00:00

Testing has shown the unique NE-1 Rocket will let anyone put payloads into space on a modest budget. See for yourself!

(As of September 18, this video was watched 3,599 times.  Donate a dollar!  It will add up.)

If you are excited about space, but think it is too far away, let us help.  The NE-1 Rocket is bringing space within reach of people like you.  A unique combination of technologies allow the NE-1 Rocket to launch payloads at prices anyone can afford.  Space is the final frontier, and it should be available to everyone, not just big corporations.

The core technologies of the NE-1 have already been proven through testing and advanced simulations.  The design is ready, and much of the hardware is already here.  Now we just need your help (and your payloads) to make it all come together.

The low-cost, reusable NE-1 rocket will boost payloads of 5kg on a sub-orbital trajectory to an altitude above 100km. Near apogee the payload will experience around 3 minutes of free fall while being exposed to the hard vacuum and radiation above the earth’s atmosphere. Upon re-entering the atmosphere parachutes will deploy and allow for recovery of the payload and rocket. (Find out more at www.rocketlaunchservice.com)

The NE-1 is just the first step into a larger universe.  As a sub-orbital rocket, it will provide the foundation needed to build the larger NE-2 orbital vehicle later on.  Though the NE-2 is currently beyond the scope of this Kickstarter project, the NE-1 Rocket team is dedicated to continuing the development of these technologies and ultimately providing orbital launch services.

Background

The current aerospace climate in the US is shifting heavily towards the privatization of space. While opinions and results of this change are mixed, it has succeeded in pointing out that small and nimble private companies can achieve dramatic results using a fraction of the resources needed by government programs or the giant aerospace corporations that have led the field in the past. That said, the strategy for making the NE-1 Rocket is easy: keep it small, and keep it simple. Once the rocket is built, the cost of a launch is expected to be around $5,000/kg, much less than commercially available launch services.

Public interest in space has waxed and waned over the years, partly because there has always been a gap between the dream of space flight and what people think is personally attainable. This rocket will help to narrow that gap by showing enthusiast everywhere that making a real launch vehicle doesn't have to be difficult or expensive.

It's Reusable!

It is important to keep the rocket design simple and inexpensive. Three strategies will be employed to do this. The rocket will be reusable. It will have self-pressurizing propellants. It will have a self-cooling chamber. Making the rocket reusable seems like an obvious choice, but often enough the cost of refurbishing a rocket after a flight is prohibitive. Damage to the airframe or propellant tanks from landing, damage to the engine from heating and cooling, and wear and tear on propellant pumps all have to be assessed and repaired. Some of these problems can be overcome by reducing the impact velocity with larger parachutes, making structures more robust, or cheaper and easily replaceable.

NE-1 Rocket Design
NE-1 Rocket Design

A Hot New Fuel

Reducing wear on the propulsion system brings us to the next strategy for simplicity: Self-pressurizing liquid propellants. Self-pressurizing just means that a liquid propellant sitting in a tank will naturally try to vaporize until a certain pressure is reached. Using self-pressurizing propellants removes the need for complicated and expensive turbo-pumps. For this rocket, nitrous oxide will be used as the oxidizer. At room temperature the vapor pressure of nitrous oxide is around 750psi, so in a tank it will boil until that pressure is reached. There are few fuel options that will self-pressurize to a high enough pressure for this engine, so a novel fuel was developed to make it possible. The NE-1’s new formula is quite cheap and can be customized to any desired tank pressure. Though having high propellant tank pressures removes the need for turbo-pumps, it does make the tanks heavier. On larger rockets this makes more of a difference because the mass of a tank required to hold a given pressure increases with the cube of the tank radius. In this case the savings from a simpler system far outweighs the cost of lifting the heavier tank. Once again being small has its advantages. In addition, the higher pressure tank is also more durable during landing.

A Cool New Combustion Chamber

The final method for reducing complexity is an up-and-coming chamber cooling method. Typical rocket engines require that the combustion chamber walls be cooled to prevent the walls from melting. This is usually done by constructing the chamber with an array of small channels lining it all the way around. One of the propellants flows through the channels and removes heat from the wall. Making a chamber like this is quite expensive and a significant amount of pressure can be wasted while passing through the cooling channels. Furthermore, the interior surface of the wall still becomes hot, while the outside remains cool causing thermal stresses to push and pull at the wall material and weaken or crack it over time.

Cold Wall Vortex Cooling vs Conventional Cooling
Cold Wall Vortex Cooling vs Conventional Cooling

Instead of cooling channels, the NE-1 will use the patented Cold Wall Vortex flow field developed by ORBITEC. This technology uses a novel propellant injection scheme to insulate the walls from the combustion products, thus preventing them from ever heating up. We can simultaneously remove the complex and costly cooling channels while reducing the thermal wear and tear on the combustion chamber.

NE-1 Prototype Engine Design
NE-1 Prototype Engine Design

Proving the Design

Several new technologies are incorporated into the NE-1. While each is well characterized by itself, testing all the parts together is an important step in the design process. A half-scale prototype of the rocket engine and all the test hardware was built to ensure the feasibility of the project. The system includes the rocket engine, home-made throttleable servo valves for both propellants, and the complete propellant feed system. An in-house custom designed micro-controller board runs all of the electronics and records data. It uses an ATMEL controller to operate the two servo valves and records data from 5 pressure transducers, 4 thermocouples, and 3 load cells.

Rocket Control Electronics
Rocket Control Electronics
NE-1 Prototype Engine
NE-1 Prototype Engine

The first tests were performed in late May at the large scale testing facility operated by Orbital Technologies Corporation (ORBITEC) at the decommissioned Badger Army Ammunition Plant in Baraboo, Wisconsin. So far valve sizing on the available nitrous oxide bottles has limited tests to 1/5th of the normal flow rate.  This has resulted in sub-optimal performance and unsteady combustion, but some important data has been collected.

Rocket Test Stand (rocket hardware usually isn't pretty)
Rocket Test Stand (rocket hardware usually isn't pretty)

One early question was whether the engine could be safely ignited externally with a remotely triggered magnesium flare. It was found that flare ignition is fairly reliable. Also importantly, when the flame front reaches the interior of the chamber where a premix of fuel and oxidizer are waiting, it does not cause a detonation.

Another concern was how the Cold Wall Vortex flow pattern would work in this chamber configuration with these propellants. If the flow field collapsed or failed to cover the entire chamber wall, the aluminum would quickly melt. This concern has been easily dispelled after watching several tests on a thermal imaging camera. During each test the chamber wall cools significantly rather than heating up.

Prototype NE-1 Engine Test
Prototype NE-1 Engine Test

Finally, initial estimates of chamber pressure are close to experimental values. This data is not as definitive as I would like since the flow rates are too low to allow for stable combustion. However, during the periods of stability the engine performance is consistent with theory.

The Launch

With sufficient support, the NE-1 rocket and it's payload will be launched into space. Two locations are under consideration for the launch.  Keeping operations local would dramatically reduce travel costs, so the first choice is Spaceport Sheboygan located by Lake Michigan in Wisconsin. Though no suitable facility currently exists for a rocket of this size, with support it may be possible to establish some new capabilities. The second launch location is the Mojave Air and Space Port in California. They have been very helpful with the FAA requirements for launch clearance and the price for leasing a launch site is very reasonable. The down side is that California is a long way from Wisconsin. The rocket will have to be shipped and the launch team will have drive out there with all of the gear.

Your Contribution

A substantial amount of planning and work has already gone into this project to make sure the goals are attainable. Advance trajectory simulations have been written and run to predict altitude. All of the components have been sized, and the entire rocket has been fully modeled in CAD software. The prototype NE-1 was tested to study ignition, throttling, and engine performance. But never fear! There is plenty left to do, and your contributions will make it possible. Here is what has to get done:

  • Upgrade test hardware to allow full flow rates
  • Complete testing of prototype rocket engine to determine performance
  • Complete trajectory simulations using new performance data
  • Complete design of final rocket
  • Design upgraded control and data acquisition electronics
  • Purchase components and propellants
  • Fabricate upgraded control and data acquisition electronics
  • Fabricate and assemble structure, tanks, plumbing, and rocket engine
  • Test engine performance
  • Fabricate airframe and launch structure
  • Conduct complete safety analysis and flight plan
  • Obtain FAA flight waiver
  • Lease launch site from Mojove Air and Space Port
  • Transport rocket, propellants, and personnel from Wisconsin to California launch site
  • Launch!

Find out more at www.rocketlaunchservice.com

The Stretch Goals

Depending on how much money we raise there are some improvements to add to this plan. The first addition would be a second launch. In theory the rocket is designed to be recovered after a launch, then refitted with new fins, refueled, and launched again the next day. A demonstration of this capability would go a long way towards showing the world that big companies and big budgets aren’t necessary to get big results. To perform this feat a wide variety of spare parts will have to be available to ensure any damaged components can be replaced in the field. Additional work will determine how to identify what parts may need repair after a landing, and how to best replace them with as little disassembly as possible. Finally, the additional propellants for the second launch will have to be purchased and transported.

If even more funding is available it would be beneficial to iterate on the engine design and testing to improve the chance of a successful launch. There are many geometric factors that affect the performance and reliability of a rocket. While my experience in rocket design has allowed me to make a working prototype engine, different propellants and thrust levels all have their own needs. With the opportunity to make and test several engines I could improve engine performance and increase the reliability and final altitude of the rocket.

Going Orbital!

The NE-1 Rocket is just the first step.  The conceptual NE-2 Rocket will build on the experience of the NE-1 and go into orbit.  Though the NE-2 is not currently part of this Kickstarter project, if enough money is raised we will begin work on this vehicle ahead of schedule.  The NE-2 will be designed with the same simple and cheap approach as the NE-1, and will launch between 5kg and 10kg into low earth orbit (LEO).

Risks and challenges Learn about accountability on Kickstarter

Plenty of challenges await. We have been developing this project for about a year and have encountered many of them already. Some challenges will continue and some will be new.

Planning how to safely use and test the rocket hardware is a challenge that will continue to be faced. This requires an understanding of how the hardware is supposed to work, and a lot of hard thinking about how it might fail. In many cases fail-safes can be put in place so that everything will shut down if a problem occurs. In other instances the best way to keep everyone safe is to do the tests remotely. In both cases it is important to have a safety plan in place to keep procedures safe and to safely deal with hazardous conditions.

Component testing is also very important. Each piece of the rocket has to be reliable or else bad things are likely to happen. In the prototype test program the bulk of the time went into debugging software and electronics. Even more time will be spend performing checkout tests on the flight components. Each component will be required to perform flawlessly when tested by itself and as a part of the entire system.

When the entire rocket is assembled, dry-runs (rocket tests that are identical to flight conditions but have no propellants) will be run to verify that the system works together. Then cold-flows (rocket tests that flow propellants, but are not ignited) will be performed before moving on to actual tests.

In addition to internal safety plans, an official flight and safety plan must be developed before obtaining a license from the FAA for launch. I will need to show that the risks involved in launching the rocket have been minimized and that there is no chance that it will fly off course and hurt anyone. There are several good references for developing these documents and the FAA has been quite responsive to my questions.

There are other practical considerations which may prove challenging during this project. I will have to find a suitable work space and assembly area for the vehicle. Some of this work will be done at ORBITEC along with the testing of the vehicle, so space may be available there. I also have a very large, unused garage that may be converted into a work area.

Along with size and space constraints comes the problem of transporting a 20ft rocket along with the necessary propellants from Wisconsin to California. This will pose a challenge, but should be overcome by a combination of renting a U-Haul trailer and UPS Freight shipping. Vendors for the nitrous oxide will have to be identified near the launch site to avoid legal and safety issues.

FAQ

  • The NE-1 Rocket uses a unique combination of technologies to make it simpler fabricate, and less expensive to operate. First, the NE-1 is reusable. This means that most of the components only have to be purchased once. Second, the NE-1 uses the cold wall vortex injection scheme developed by ORBITEC to simplify the chamber geometry while decreasing wear and tear. Third, it uses self pressurizing propellants that simplify the propulsion system and reduce mass. A new fuel was developed specifically for this purpose that is not available anywhere else.

    Last updated:
  • Yes. Despite what is listed in the rewards section I am willing to ship internationally. I set up the rewards before I checked international shipping costs and I am currently unable to update them. I apologize for my lack of foresight. I truly would like to make space available to anyone, not just those living in the US. For now please send me a message if you have concerns. I will be working with Kickstarter to see if I can update the listings.

    Last updated:
64
Backers
$1,956
pledged of $75,000 goal
0
seconds to go
  • Pledge $1 or more
    You selected

    19 backers

    If you are excited about rockets, but don't have a lot of cash, you can still pledge a dollar. Even one dollar pledges can add up. You will have my gratitude.

    Estimated delivery:
  • Pledge $10 or more
    You selected

    20 backers

    I'll send you movies of the launch. If the rocket comes back in one piece I'll even send you a movie from the on-board camera! (These will only be available electronically)

    Estimated delivery:
  • Pledge $25 or more
    You selected

    10 backers

    This amount will get you the launch videos as well as the telemetry data showing the altitude, velocity, and acceleration over the course of the flight. While the rocket is within 20miles this data will be radioed back to the ground. The rest of the data will be stored on the rocket and will only be available if we safely recover the electronics.

    Estimated delivery:
  • Pledge $50 or more
    You selected

    4 backers Limited (2996 left of 3000)

    You will get all the above movies and data, and a certificate that's been to space. We'll print it on a piece of paper in the payload bay and attempt to blast it into space. If we can retrieve it after landing we'll send it to you.

    Estimated delivery:
    Ships within the US only
  • Pledge $100 or more
    You selected

    5 backers Limited (995 left of 1000)

    You get all of the above and a small button that will have been launched into space. It will read "I was in space!". Wearing the button doesn't mean you went to space, but you don't have to tell people that. As with the rest of these rewards, I can't guarantee a successful launch, but I will send you the button if possible.

    Estimated delivery:
    Ships within the US only
  • Pledge $300 or more
    You selected

    2 backers Limited (98 left of 100)

    Send me a trinket of your choosing that has a mass of less than 10 grams and I'll either launch it into space, blow it up, or crash it really hard into the ground. Whatever happens, I'll send back as much of it as I can. There are volume and safety considerations to take into account, so I reserve the right to return your object and ask for a replacement if it isn't going to work out.

    Estimated delivery:
    Ships within the US only
  • Pledge $4,000 or more
    You selected

    0 backers Limited (5 left of 5)

    Donate payload mass to a school or group of your choice. There is no better way to get kids interested in space than to allow them to participate in an actual space launch. First they will be provided with updates during the rocket design and fabrication process, and given details about the math used to make it possible. Then they will get information about the rocket performance and how to use it to predict maximum altitude. Finally, they can send me a class project with a mass of less than 150g which I will attempt to launch. If possible it will be sent back afterwards along with all of the video and data from the launch.

    Estimated delivery:
  • Pledge $10,000 or more
    You selected

    0 backers Limited (2 left of 2)

    Launch your cubesat! Sure it's sub-orbital, but a few minutes in space is better than none at all. Plus, if you can show that your cubesat survived the rigors of launch and recovery you can be far more confident about its performance on later launches. As with the other rewards I can only guarantee that I will try to launch and recover your cubesat. There is always a chance it will not come back in the same shape it started.

    Estimated delivery:
Funding period

- (30 days)