Funding Unsuccessful This project’s funding goal was not reached on .
Photo-main
Play
00:00
00:00

Coral reefs support half a billion human lives, but are increasingly damaged and dying; we want to build robots that repair them!

Coral reefs support over 500 million people across the globe. But reefs are being damaged on a global scale by storms, destructive fishing, ship groundings and careless tourists. It can take many years to decades for them to heal. We can speed up the process by using scuba divers that re-attach healthy pieces of coral back onto the reef like these pictures show from the "Fragments of Hope Coral Nursery in Belize" (photos by Lisa Carne) using skilled paid fisherman and tour guides that are an integral part to the reef restoration process. But this method cannot be used to repair reefs in deeper waters because of depth limits to humans diving.

corals in Belize
corals in Belize
One of the ways in which scuba divers attempt to repair coral ecosystems
One of the ways in which scuba divers attempt to repair coral ecosystems

The answer: ‘coralbots’.

Coral-bots are a team of robots that intelligently navigate across a damaged coral reef, transplanting pieces of healthy corals along the way. The big job of developing and testing the robots at sea has already been done. All that remains is to embed the robots with computer vision to “see” healthy bits of coral, and configure appropriate manipulator arms for each robot to pick up and put down the pieces in the right spots. Kickstarter funds will let us purchase and assemble this kit, and allow us to conduct our first live demonstration of the robot team on a coral reef in a public aquarium. This will provide a conservation solution that paves the way for coral reef restoration across the globe. 

Here are some examples of autonomous underwater vehicles (i.e underwater robots) that have been developed by the Ocean Systems Laboratory (part of the coralbots project team) for purposes such as monitoring of underwater pipelines.

The image immediately above, 'Nessie 4' is the platform we intend to adapt for the first missions to repair coral reefs in Belize, and for demonstrations prior to that in public aquaria. This platform is easily equipped with onboard camera, computing, and flexible arms and grippers. A prototype first coralbot design can be seen in the main image that accompanies our kickstarter presence.

What makes our vision work is our idea of using swarm intelligence methods to control robot behaviour. Swarm intelligence explains how simple behaviours in a group of creatures can lead to complex and functional structures – this is how bees build hives, and termites build complex mounds, and beavers build dams. See here for a basic tutorial on swarm intelligence:

http://www.macs.hw.ac.uk/~dwcorne/Teaching/SIchapterforHandbook_NC.pdf

Borrowing ideas from swarm intelligence, we can build on state of the art expertise in each of coral biology (Lea-Anne Henry), autonomous underwater robots technology (David Lane runs the Ocean Systems Laboratory at Heriot-Watt University, Edinburgh, and Dick Blidberg runs the Autonomous Undersea Systems Institute in New Hampshire), swarm intelligence (David Corne), and video/image processing (Neil Robertson – giving coralbots the ability to distinguish coral and understand the other key things in its environment).

With $107,000, in six months – with your help – we can demonstrate this technology in public with two specially adapted robots.

Every extra $$ will extend the number of public demonstrations, bringing us closer to our ultimate goal of increasing the team size to eight robots and using them on coral reefs around the globe.

As you may imagine, it certainly doesn’t stop there. The concept of swarm intelligence combined with what we know is possible in underwater robotics and computer vision, all make for a powerful combination that could contribute immensely to a swathe of issues in the marine environment. Help us in that longer term programme by first backing coral-bots!

Risks and challenges Learn about accountability on Kickstarter

Getting robots to do things autonomously is hard, and getting them to do it underwater is even harder. But the coralbots team is a highly motivated group of individuals whose collective track record of successful underwater robotics projects is very hard to beat. We already know the typical obstacles and how to surmount them. What we want to do in this project (and in the wider programme) is to change the way robots are used and perceived in marine science, and in environmental science as a whole: at present, robots are invariably used just to do monitoring and/or surveillance. But, modern artificial intelligence coupled with underwater experience can enable them to do so much more, and make a big difference to many global challenges. In this project that means we need to get the machine vision, arm/gripper control and associated navigation algorithms right, as well as tackle and solve various issues (that the team has solved in other projects) of communication between robots and between an onshore, or on-surface team and the robots. We know we can do all of this with current tried and tested technology - the major risk is that the performance of the system we will be able to build with the kickstarter resources will be quite slow -- but one slow robot that takes several days to restore a small reef system is better than nothing at all (when that reef is too deep for scuba divers) and better than risking human lives. And, as we further improve the hardware and software technologies in parallel, we can speed this up by adding more robots (which is one of the benefits of the 'swarm intelligence' approach).

FAQ

  • Thanks to Anton to be the first to ask this question.

    Definitely, everything we generate with kickstarter funds and a whole lot besides will be open source!

    There is an issue to be aware of though: to be able to get the real work of reef restoration started as soon as possible, we expect we will need to exploit some h/w and s/w that has already been designed, including some off the shelf equipment (some we have already and some we don't). It could be that not all of that is open source yet. Basically, the fastest way to get these problems addressed means (for example) that we stand on the shoulders of some visual servoing ware that comes packaged with a particular robot gripper (that sort of thing). But I repeat, of course all code we generate, and any new h/w, will be open. This certainly includes all of the swarm intelligence aspects and machine vision for coral (and similar) recognition, and so on. And we will advise on open alternatives for anything we happen to make use of that isn't, until we have the resource to develop/adopt that ourselves too.

    Last updated:
  • Thanks to Herbert to be first to ask this question and suggest it as an FAQ.

    Various approaches to attachment have been tried on reefs by SCUBA divers, and research has monitored the success of the re-generation of different attachment methods. A promising approach seems to be 'underwater epoxy' - basically, glue that works in that environment. Divers also sometimes use wires/ties and nets. We have robotics approaches that will be able to operate each of these techniques. In each case (and with the current state of technology) our approaches will likely operate slowly at first. But of course, they can keep going for several hours, and are multiplied in speed by having a robot team. The epoxy approach is particularly interesting in the light of swarm robotics -- likely we'll have specially prepared plugs of epoxy lowered to the seabed nearby on a pallet; half of the bot team would then pick up and find good places for these - the other half would handle coral and find epoxy plus to put them on. There is also the simpler case where divers have to transplant nursery-grown corals - these are typically placed in concrete 'pots' that are then placed in a suitable area on the reef. The bots will pick up the pot, and place it, with little or no need for further fixing.

    This was DavidC

    Last updated:
853
Backers
$33,871
pledged of $107,000 goal
0
seconds to go
Img_1342.medium
  • First created · 0 backed
  • Has not connected Facebook

See full bio

  • Pledge $10 or more
    You selected

    204 backers

    Your name/logo on our site and a certificate that thanks you for contributing to saving the planet;

    Estimated delivery:
  • Pledge $12 or more
    You selected

    40 backers

    As 10$, and, if we reach $112,000, a postcard with a coralbots project image and signed thank you from the team --

    Estimated delivery:
  • Pledge $25 or more
    You selected

    221 backers

    As $10, plus your name printed on one of the robots, in 5mm high letters

    Estimated delivery:
  • Pledge $35 or more
    You selected

    51 backers

    As $25, plus (if we reach $130,000), a coralbots project T shirt

    Estimated delivery:
  • Pledge $45 or more
    You selected

    13 backers

    As lower value pledges, plius a Coralbots project game! You will get an education-oriented and an entertainment-oriented game in one. The first release will be approx. Sep 2014; backers will also get all versions beyond that for free for 5 years. The game will be available at a cost to non-backers to help continued funding of our project. How can we do this? We have access to a pool of very gifted and keen Computer Science students who need great things to do for their u/g and MSc projects. Game mechanics? Think in terms of a team of coralbots that need to restore a reef system before their power runs out, then they go on to more and more difficult missions. The education vision will take you through elements of machine vision (you teach it to recognize coral, etc), swarm intelligence (rules that lead to co-operative emergent behaviour), and autonomous robot navigation, obstacle avoidance, manipulation, and so on. The entertainment version will be lighter on that / heavier on peril. Quality? We're definitely not a games company. It will be playable, and the graphics may not be all that good, but future versions will get better.

    Estimated delivery:
  • Pledge $48 or more
    You selected

    27 backers

    Adopt a coralbot! Backers will get an adoption certificate, special and regular reports on the activities (from build onwards) on a specific coralbot that they ‘adopt’, and view its diary and activities on our website in a special adopters area; this will rotate with time, with your adoption moving on to a new coralbot as your original one is superceded.

    Estimated delivery:
  • Pledge $50 or more
    You selected

    70 backers

    As $25, but with 10mm letters

    Estimated delivery:
  • Pledge $100 or more
    You selected

    0 backers

    This is especially for schools, or individuals who intend to arrange this for their local school. Your school name and a picture will appear in a 'Coralbots Education and Schools' area on our website, and we will arrange a 30-minute skype session for a class at your school, with one or more of the Coralbots team.

    Estimated delivery:
  • Pledge $100 or more
    You selected

    53 backers

    As $50 but your name in 1.5cm tall letters, and you get a personal 30-seconds thank-you video from the team.

    Estimated delivery:
  • Pledge $150 or more
    You selected

    2 backers

    As the $100 reward for schools, plus your school will be able to download a special 20-page school's educational pack about the science around the coralbots project, and quarterly 3 minute video updates of the project also especially designed for schools. Your school will be especially credited in the package and in the videos.

    Estimated delivery:
  • Pledge $250 or more
    You selected

    6 backers

    as $100, but 2cm Name on a coralbot,

    Estimated delivery:
  • Pledge $300 or more
    You selected

    2 backers

    at this level or above, backers are invited to be directly involved in the Coralbots mission. Sorry it is a high level for many who may want this type of involvement, but we have to be very careful of the administrative load around this. There are two main ways to be involved: (i) work with us on one or more of the computational intelligence challenges (image segmentation, robot control, etc.). We will provide code and data that enables you to test and evaluate your own variations (or completely different approaches) of software for, for example, recognising live coral fragments. Similar challenges will be available in relation to several aspects of the project. You will have your picture on our website as a “Coralbots Developer”, and your work and results will appear on the site in our development blog. If we reach $130,000 (and maybe if not, if we can get good deals on hardware), you will get a “Coralbots Developer” T-shirt. (ii) Simply work with us to enable us to use your computer resources to help speed up and expand our development and testing. You will have your picture on our website in the “Coralbots IT Support” section, and the development blog website will highlight developments that happened to involve use of your resources. If we reach $130,000 (and maybe if not, if we can get good deals on hardware), you will get a “Coralbots IT Support” T-shirt.

    Estimated delivery:
  • Pledge $500 or more
    You selected

    3 backers

    as $250, plus your name credit in all videos of coralbots in action released by the team.

    Estimated delivery:
  • Pledge $1,000 or more
    You selected

    1 backer

    as $500, plus; your name will be etched on a stone that will become part of the structure of our first reconstructed reef. We expect this to take place by Oct 2014

    Estimated delivery:
  • Pledge $2,500 or more
    You selected

    0 backers

    as $1000, but with your name on all robots we use for coral reef reconstruction in the first five missions;

    Estimated delivery:
  • Pledge $5,000 or more
    You selected

    0 backers Limited (20 left of 20)

    as $2500, plus you are invited to visit us in Edinburgh to meet the team and take a tour of our labs. We have to ask you to cover your own travel costs, but lunch is certainly on us! This can happen any convenient time from July 2013 onwards.

    Estimated delivery:
  • Pledge $5,000 or more
    You selected

    1 backer

    as $2500, plus your name etched on a stone in each of our first five reconstruction missions, and we will name one of the robots after you (or give it any name you indicate, within reason)

    Estimated delivery:
  • Pledge $10,000 or more
    You selected

    0 backers

    As for pledges below this value, plus: the first 10 backers at this level will be our invited guests (paying their own costs) at the demonstrations of coralbots (likely to be in Deep Sea World, Edinburgh, or the Fort William Underwater Centre), and will be invited to join us on one future reef restoration mission (covering own travel costs)

    Estimated delivery:
  • Pledge $10,000 or more
    You selected

    0 backers Limited (1 left of 1)

    Corporate backer: for a sole corporate backer who may feel their support of the project may be helpful in their PR. The team will work with you on video material in which we thank your organization for its support, and explain the impact that this support will have. Have your company Logo on every Coralbot and all branded Coralbot literature, digital presence, games, and so forth. Be the sole prganisation associated with the Coralbots mission

    Estimated delivery:
Funding period

- (42 days)