Funding Unsuccessful This project’s funding goal was not reached on .

We are attempting to build the simplest, most efficient and practical human powered helicopter ever made.

Our first model with the modified frame
Our first model with the modified frame

Does it fly?

Not yet. We require additional funding to construct the model that will incorporate all of our accumulated research and knowledge from the past two years into our final version that we believe will fly.

A brief synopsis:

Since May of 2011, we have been researching and building platforms in a concentrated effort to build a human powered helicopter that is simple, reliable, and has the potential for practical recreational use. Having worked arduously over the past two years to reduce the amount of energy required for human powered vertical flight, we have found that the fundamental aspect of human powered flight is the efficiency of the rotor. We are now confident that we can build a flying human powered helicopter.

Why is the rotor design so important?

Most engine powered helicopters use a symmetrical airfoil for the rotor which produces no lift a zero degrees angle on attack, and thus requires an increase in the angle of attack to create lift. In our evaluations we have found that for any airfoil, an angle of attack over zero degrees even when an airfoil is not stalled, produces massive amounts of trailing wake vortices (these are not the same as the well known wingtip vortices). Essentially, the rotors are traveling in the wake of the preceding rotor thus creating a turbulent airflow for the succeeding rotor. Trailing wake vortices are unavoidable with a rotor that operates at an angle of attack greater than zero. However, trailing wake vortices can almost be eliminated by using a cambered airfoil at or near zero degrees angle of attack. 

The taper of a rotor is also crucial, not just because a strong taper reduces the well-known wing-tip vortices which consume a lot of energy, but also because a properly designed rotor can equalize the lift and drag along the span of the rotor, essentially giving the rotor a straight line lift curve, without the curve.

What makes the rotor so efficient?

-The Airfoil

The S1223 airfoil has a lift coefficient of 1.1 at 0 degrees angle of attack and drag coefficient of .02. (It is among the highest lift to drag ratios among single element airfoils)

-The Pitch/Angle of the Rotor

The rotor will be set at 0 degrees angle/pitch. This eliminates most trailing wake turbulence. This is crucial because the rotors are no longer rotating into the downwash of the of the preceding rotor, which creates a huge swirling airmass that drastically increases the energy required. (This is why the rotors of other human powered helicopters must rotate so slowly, to give the swirling airmass time to dissipate before a rotor encounters the downwash of the preceding rotor)

-The Taper of the Rotor

The rotor has a taper that produces the same amount of lift and drag along the entire span at any given point. This is very important because the speed of at the tip of a rotor is much greater than at the root. With rectangular rotors, the lift, and thus the drag, is highest at the tip which builds up and prevents the inner portion of the rotor from reaching its maximum efficiency. This taper also minimizes wingtip vortices as well.

So what does the rotor look like?

Side View of Optimally Tapered Rotor
Side View of Optimally Tapered Rotor
Top View of Optimally Tapered Rotor
Top View of Optimally Tapered Rotor

We believe that we have designed a helicopter that is so efficient that we can lift 300 pounds on 300 watts or less. This is less than half of the 750 watts required by other human powered helicopters.

How do you calculate your lift and verify it?

We use an Excel spreadsheet to calculate the lift by using Blade Element theory. Simply put, we divide the rotor into one inch segments and calculate the lift for that 1-inch segment. We need to do this because the speed increases at each segment of the rotor as it spans outward, vastly different from the wing of an airplane which has a constant speed over the wing along the span. 

Blade Element Theory Spreadsheet in Excel
Blade Element Theory Spreadsheet in Excel

We verify our lift calculations by using digital automotive scales which show a decrease in the gross weight of the helicopter as lift increases.

The scales are seen underneath the helicopter
The scales are seen underneath the helicopter

What should the finished Helicopter look like?

3-D Rendering
3-D Rendering
Side View
Side View
Top View
Top View

Why two sets of rotor?

We use two sets of rotors, also called a co-axial configuration, because a tail rotor consumes approximately 20% of the energy of a helicopter and so with this design we are able to direct all of the pilots energy towards generating vertical lift without the tail rotor. This design also places the pilot directly below the rotors which allows the the greatest amount of stability.

How will you control it?

This model will be controlled by shifting the weight of the pilot. We are currently designing a cyclic control system for precision directional control. 

Do you intend to compete in the Sikorsky Competition?

Yes, we do intend to. However, there are several other teams actively competing for the Sikorsky Prize, so we will still finish our project even if the prize/competition is already won before we finish. The primary focus of this project is to create a practical human powered helicopter that almost anyone can fly, not just to win a prize.

What is the Sikorsky Competition?

The Sikorsky Competition is a monetary prize of $250,000 to be awarded to the first team to build and fly an human powered helicopter under these conditions:

1. Fly for 60 Seconds

2. Make it 9.8 feet above the ground

3. Stay within a 10-Square meter area

More detailed information can be found here:

Risks and challenges Learn about accountability on Kickstarter

Almost all of the work for this project will be completed in Eastman, Georgia at the Aviation Campus of Middle Georgia State College, We have a minimal reliance on external resources to complete this project. All equipment that is needed is in the campus facility and for those few parts that we will have to order, we have multiple suppliers to select from should one be unable to supply us with the materials that we require.


Have a question? If the info above doesn't help, you can ask the project creator directly.

Ask a question
pledged of $20,000 goal
seconds to go
  • First created · 3 backed
  • Has not connected Facebook

See full bio

  • Pledge $25 or more
    You selected

    8 backers

    'Simplicity' Decal-The same type affixed on the helicopter. One set of decals(2 horizontal and 2 vertical stickers) Dimensions: 18" by 2"

    Estimated delivery:
  • Pledge $50 or more
    You selected

    4 backers

    A brass airfoil profile cutout- A profile of the S1223 airfoil used on our Human Powered Helicopter. Dimensions: 12" Long, 1&1/2" wide, 1/8" thick

    Estimated delivery:
  • Pledge $100 or more
    You selected

    2 backers

    48 page book of detailed color photographs, schematics and 3-d drawings from our project.(Printed on high-quality parchment paper) Dimensions: 8&1/2" by 11"

    Estimated delivery:
  • Pledge $250 or more
    You selected

    1 backer

    Framed Specifications and Schematics poster-It will be mounted on an acid-free mat board with an archival mounting board in a high-quality black metal frame with UV non-glare acrylic glass. Dimensions: 18" by 24"

    Estimated delivery:
  • Pledge $500 or more
    You selected

    0 backers

    Large Framed Specifications and Schematics poster-It will be mounted on an acid-free mat board with an archival mounting board in a high-quality black metal frame with UV non-glare acrylic glass. Dimensions: 24" by 36"

    Estimated delivery:
  • Pledge $10,000 or more
    You selected

    0 backers Limited (10 left of 10)

    You will receive a fully-functional, full scale replication of our Human Powered Helicopter that will be built to the same dimension as ours. There will be little to no difference between the design we build and test and the one that you receive. Disclaimer: We do not and can not guarantee the ability of this helicopter to fly. However, if the helicopter we build flys, then yours will too under the same conditions. You should also understand that you will be receiving a replica of a prototype, not a perfected product.

    Estimated delivery:
    Ships within the US only
Funding period

- (30 days)